Investigation of certain physical–chemical features of oil recovery by an optimized alkali–surfactant–foam (ASF) system

نویسندگان

  • S. M. Hosseini-Nasab
  • P. L. J. Zitha
چکیده

The objective of this study is to discover a synergistic effect between foam stability in bulk and micro-emulsion phase behaviour to design a high-performance chemical system for an optimized alkaline-surfactant-foam (ASF) flooding for enhanced oil recovery (EOR). The focus is on the interaction of ASF chemical agents with oil in the presence and absence of a naphthenic acid component and in situ soap generation under bulk conditions. To do so, the impact of alkalinity, salinity, interfacial tension (IFT) reduction and in situ soap generation was systematically studied by a comprehensive measurement of (1) micro-emulsion phase behaviour using a glass tube test method, (2) interfacial tension and (3) foam stability analysis. The presented alkali-surfactant (AS) formulation in this study lowered IFT between the oil and aqueous phases from nearly 30 to 10-1-10-3 mN/m. This allows the chemical formulation to create considerably low IFT foam flooding with a higher capillary number than conventional foam for displacing trapped oil from porous media. Bulk foam stability tests demonstrated that the stability of foam diminishes in the presence of oil with large volumes of in situ soap generation. At lower surface tensions (i.e. larger in situ soap generation), the capillary suction at the plateau border is smaller, thus uneven thinning and instabilities of the film might happen, which will cause acceleration of film drainage and lamellae rupture. This observation could also be interpreted by the rapid spreading of oil droplets that have a low surface tension over the lamella. The spreading oil, by augmenting the curvature radius of the bubbles, decreases the surface elasticity and surface viscosity. Furthermore, the results obtained for foam stability in presence of oil were interpreted in terms of phenomenological theories of entering/spreading/bridging coefficients and lamella number.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Investigation of the Effect of Calcium Lignosulfonate on Adsorption Phenomenon in Surfactant Alternative Gas Injection

Fractional flow analysis confirms the advantages of surfactant alternative gas injection (SAG) in enhanced oil recovery, but an adsorption phenomenon that has been affected by several factors, weakens the effectiveness of SAG injection. In this study, the effects of sacrificial agent, gas phase, and surfactant concentration on adsorption density on silica mineral were investigated by static and...

متن کامل

An Experimental Study of Alkali-surfactant-polymer Flooding through Glass Micromodels Including Dead-end Pores

Chemical flooding, especially alkaline/surfactant/polymer flooding, is of increasing interest due to the world increasing oil demand. This work shows the aspects of using alkaline/surfactant/polymer as an enhanced oil recovery method in the porous media having a high dead-end pore frequency with various dead-end pore parameters (such as opening, depth, aspect ratio, and orientation). Using glas...

متن کامل

An Experimental Examination of Adsorption Phenomenon in Foamassisted Water Alternative Gas: The Effect of Injection Rate

The main factor affecting the economics of foam-assisted water alternative gas (FAWAG) process is the loss of foaming agent by adsorption onto reservoir rocks. In this study, the effects of phases, surfactant concentration, salinity, adsorbents, and sacrificial agent on adsorption density were investigated by special adsorption experiments. Moreover, a series of FAWAG tests were performed to ex...

متن کامل

Investigation of Chemical-Foam Design as a Novel Approach toward Immiscible Foam Flooding for Enhanced Oil Recovery

Strong foam can be generated in porous media containing oil, resulting in incremental oil recovery; however, oil recovery factor is restricted. A large fraction of oil recovered by foam flooding forms an oil-in-water emulsion, so that costly methods may need to be used to separate the oil. Moreover, strong foam could create a large pressure gradient, which may cause fractures in the reservoir. ...

متن کامل

Recovery of Oil in Limestone with Cationic Surfactant: Investigation of the Adsorption, Wettability, and Spontaneous Imbibition

The performance of petroleum recovery methods is dependent on the characteristics of the reservoir rock, oil quality, and formation water. One fundamental feature for considering petroleum recovery methods is the wettability of the rock reservoir. Also, this feature impacts the displacement of fluids in the rock reservior. In the case of the limestone, which normally features oil wettability, e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 295  شماره 

صفحات  -

تاریخ انتشار 2017